Ultra-short pulsed laser processing of single crystalline diamonds for tooling applications

Author:

Michael Kiran1ORCID,Greiner Lukas1ORCID,Dreizehnter Philip2ORCID,Weixler Jodok1ORCID,Putzer Matthias2ORCID,Schudeleit Timo2ORCID,Bambach Markus3ORCID,Wegener Konrad1ORCID

Affiliation:

1. Institute of Machine Tools and Manufacturing, ETH Zurich 1 , Leonhardstrasse 21, Zurich 8092, Switzerland

2. Inspire AG 2 , Technoparkstrasse 1, Zürich 8005, Switzerland

3. Advanced Manufacturing Laboratory, ETH Zürich 3 , Technoparkstrasse 1, Zürich 8005, Switzerland

Abstract

This study investigates the feasibility of using ultra-short pulsed (USP) lasers to fabricate single crystalline diamond (SCD) tools. SCD has exceptional mechanical, tribological, and thermal properties and offers excellent performance in the precision machining of hard and brittle materials over polycrystalline diamond and diamond-coated tools. However, the anisotropic nature of the SCD makes it difficult for laser machining because the material shows susceptibility to cracking, defect growth, and breakout depending on its crystallographic orientation. Anisotropy needs to be considered while optimizing the geometry of the tool to minimize wear and improve tool performance. An advanced four-axis laser machining approach with optimized laser parameters and temporal beam shaping is used to mitigate challenges related to defect growth and orientation dependence, leading to the production of high-quality single cutting-edge SCD tools. Cylindrical diamonds and diamond crystals with top surface planes {100} and {111} are used in the study. The occurrence of defects in the diamond when laser machined and their dependence on the crystallographic orientation along the circumference of the diamond is thoroughly investigated via SEM, electron backscatter diffraction, and light microscopy images. Finally, the laser-manufactured SCD tools are tested by turning fully sintered zirconia ceramics (3Y-TZP-A). USP laser machining of SCD is demonstrated to be a viable alternative to traditional manufacturing methods for producing high-quality SCD tools with unique properties and performance. The results further emphasize the importance of understanding the crystallographic orientation dependence when laser machining crystalline materials like diamonds.

Publisher

Laser Institute of America

Subject

Instrumentation,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3