Fusing optical coherence tomography and photodiodes for diagnosis of weld features during remote laser welding of copper-to-aluminum

Author:

Brežan Tine1ORCID,Franciosa Pasquale2ORCID,Jezeršek Matija1ORCID,Ceglarek Dariusz2ORCID

Affiliation:

1. Faculty of Mechanical Engineering, University of Ljubljana 1 , Ljubljana, Slovenia

2. WMG, The University of Warwick 2 , Coventry CV4 7AL, United Kingdom

Abstract

This study has been designed to investigate whether variations in the features of laser weldments can be isolated and diagnosed by fusing photodiodes and optical coherence tomography (OCT). Two manufacturing scenarios (variation in laser power and focal offset) have been considered during remote laser welding of 0.2 mm thick Cu foils on 2 mm thick Al 1050 plates with an adjustable ring mode laser integrated with a 1D oscillation head. The process was monitored by measuring weld penetration depth with OCT and by process emissions (plasma and back-reflection) via photodiodes. The acquisition frequency of all signals was 40 kHz. Strong correlations (r > 0.75) were shown between plasma, back-reflection, and OCT signals and measured depth and width of the weld. Weak correlations (r < 0.5) between voids, cracks, and sensor signals were observed. Although plasma is the predominant signal that carries most of the information about the process, and the OCT allows direct measurement of the penetration depth, their integration reached 87% classification accuracy of the tested welding scenarios. The main misclassification was observed between “good weld” and “over weld,” defined by the measured weld depth. Sensor fusion strategies with manufacturing implications are discussed throughout the paper.

Funder

High Value Manufacturing Catapult

APC UK Project: ALIVE

Innovate UK FASA

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

Laser Institute of America

Subject

Instrumentation,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3