Microstructure and dynamic fracture behaviors of laser-MAG hybrid welded T-joints of 945 shipbuilding steel with different heat inputs

Author:

Guo Jilong1,Zhou Lilong2,Zhao Yong1ORCID,Wang Feiyun1ORCID,Fu Juan1,Yang Xueyan3,Liu Yinjun3

Affiliation:

1. Provincial Key Lab of Advanced Welding Technology, Jiangsu University of Science and Technology 1 , Zhenjiang 212003, Jiangsu, China

2. Aerospace Engineering Equipment (Suzhou) Co., Ltd. 2 , Suzhou 215104, Jiangsu, China

3. Jiangsu Yangzi-Xinfu Shipbuilding Co., Ltd. 3 , Taizhou 225453, Jiangsu, China

Abstract

Welded T-joints of 945 shipbuilding steel are widely used in plate-beam connections, and their impact toughness directly affects the service life of shipboard structural components. However, current research efforts have primarily focused on the static mechanical properties of welded T-joints, with few scholars investigating the impact properties of welded T-joints under dynamic loading conditions. In this paper, laser-MAG hybrid welding of 945 shipbuilding steel T-joints is utilized to study the effects of heat input on the microstructure evolution and dynamic mechanical properties of welded T-joints. The results show that the increase in heat input results in a decrease in the cooling rate, which promotes the formation of lath martensite in weld metal and the formation of granular and lath bainite in coarse grain heat affected zone (HAZ). Concurrently, the higher heat input increases the width of the HAZ and leads to grain coarsening, resulting in a 298.9% increase in average grain area when the heat input rises from 12.1 to 14.6 kJ/cm. The changes in martensite content and morphology result in a reduction in the microhardness of welded T-joints. The HAZ becomes the most vulnerable region to dynamic impact loading, and the higher heat input leads to ductile fracture. Compared to high heat input, the drop hammer acceleration decreases by 34.0%, the maximum displacement increases by 45.9%, and the fracture energy increases by 43.1%, for low heat input. The changes in the drop hammer impact metrics further illustrate that welded T-joints with lower heat input are favorable for improving impact toughness.

Funder

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

Laser Institute of America

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3