Detection of Y, La, Yb, and Dy elements in rare earth ores by double-pulse laser-induced breakdown spectroscopy

Author:

Deng Zhiwei1ORCID,Hao Zhongqi123ORCID,Liu Li1ORCID,Xu Zhishuai1ORCID,Zhao Ziyi1ORCID,Lu Ying1ORCID,Shi Jiulin123ORCID,He Xingdao123

Affiliation:

1. Key Laboratory of Opto-electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University 1 , Nanchang 330063, China

2. Key Laboratory of Nondestructive Testing (Ministry of Education), Nanchang Hangkong University 2 , Nanchang 330063, China

3. Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University 3 , Nanchang 330063, China

Abstract

The sensitivity of double-pulse laser-induced breakdown spectroscopy (DP-LIBS) in the detection of trace elements in samples was confirmed to be superior to that of single-pulse laser-induced breakdown spectroscopy (SP-LIBS). However, DP-LIBS is not economical because it requires two lasers. A DP-LIBS system based on beam splitting was proposed in this work, and the experimental equipment was used to analyze Y, La, Yb, and Dy elements in rare earth ores. The comparison of spectral line intensities and sensitivities of rare earth elements in rare earth ore samples between DP-LIBS and SP-LIBS was studied. The results show that the enhancement of the spectral line signal intensity of DP-LIBS is more than two times compared with that of SP-LIBS. The time evolution of signal intensities of four rare earth element characteristic lines (Y II 437.49 nm, La II 433.37 nm, Yb II 328.94 nm, and Dy II 353.17 nm) was given. The enhancements of signal intensities were found to be due to that the plasma temperature of DP-LIBS is increased by more than 500 K. The limits of detection of Y, La, Yb, and Dy were 40.97, 104.09, 47.13, and 56.25 ppm for SP-LIBS and can be reduced to 21.19, 56.93, 28.69, and 36.41 ppm for DP-LIBS. It is showed that DP-LIBS based on a single Nd:YAG laser can better improve the signal intensity and sensitivity of Y, La, Yb, and Dy elements in rare earth ore samples.

Funder

National Natural Science Foundation of China

Jiangxi Provincial Natural Science Foundation

Open project program of Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province

Graduate sdudent innovation fund of Nanchang Hangkong University

Publisher

Laser Institute of America

Subject

Instrumentation,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3