Powder degradation as a consequence of laser interaction: A study of SS 316L powder reuse on the laser directed energy deposition process

Author:

Gutjahr Jhonattan123ORCID,Pereira Milton1ORCID,Sá de Sousa Jurandir Marcos12ORCID,Ferreira Henrique Santos2ORCID,Júnior Anselmo Thiesen2ORCID

Affiliation:

1. Precision Engineering Laboratory, Federal University of Santa Catarina 1 , Florianópolis, SC 88040-900, Brazil

2. Senai Innovation Institute for Manufacturing Systems and Laser Processing 2 , Joinville, SC 89218-510, Brazil

3. TWI Ltd. Laser Additive Manufacturing 3 , Rotherham, South Yorkshire S60 5TZ, United Kingdom

Abstract

The feedstock capture efficiency on powder laser directed energy deposition (L-DED) is becoming a big challenge in the industrial use of the L-DED process for the manufacturing of large-scale AM parts. The powder capture efficiency is dependent on process optimization and the toolpath. The current literature presents a vast range of usual powder efficiency, between 3% and 32% and in some specific cases exceeding 90%. In L-DED, the powder-gas jet stream interacts with the laser beam adding material locally onto the substrate. Part of this material is captured by the melt pool. The not captured material that is affected by the laser beam suffers degradation. In the literature, there is a lack of studies related to powder reuse in the L-DED process. This paper presents a comprehensive study on the consequence of laser interaction with SS 316L metal powder particles during the L-DED process using a range of different powder characterization techniques to assess the powder morphology, size distribution, chemical composition, followability, and density. The study was conducted within eight powder reuse cycles, without adding virgin material to the powder batch. Reduction of particle size distribution range, increase in circularity, and improvement in the powder flowability were identified as consequences of powder reuse. The result of laser interaction with particles was further explored by scanning electron microscopy, presenting the continuous modification of the particles across the eight reuse cycles. The oxygen content on the particles was also measured to access the O2 pick-up as a consequence of particle heating.

Publisher

Laser Institute of America

Subject

Instrumentation,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3