Affiliation:
1. Jiangsu Provincial Engineering Laboratory for Laser Additive Manufacturing of High-Performance Metallic Components, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics , Nanjing 210016, China
Abstract
Although increasing the content of ceramic reinforcement in metal matrix composites can improve some mechanical properties of processed parts, it brings significant challenges to forming technologies such as laser additive manufacturing. In this study, the high-content 60 wt. % TiC reinforced Inconel 718 composites were fabricated by laser-directed energy deposition (LDED). The influence of the laser energy density (E) on the forming quality, microstructure development, and mechanical properties of the high-content TiC/Inconel 718 composites was investigated. It revealed that a smooth and continuous TiC/Inconel 718 deposition layer was fabricated at a proper E of 144.44 J/mm2. It is identified by x-ray diffraction that the high-content TiC/Inconel 718 composites contained two phases of Ni-Cr-Fe and TiC, and the Ni-Cr-Fe phase is the matrix phase of Inconel 718 superalloy. During the LDED process, the TiC particles melt and then precipitate without any phase changes. With increasing laser energy input, the TiC grain morphologies gradually experienced successive changes from an irregular shape to significantly refined and smoothened as an octahedron shape, and then to further refined as a near-octahedral shape with the growing tips. The dispersion state of the TiC reinforcing particles was homogenized due to the efficient Marangoni convection within the molten pool. At the optimized E of 144.44 J/mm2, the high-content TiC/Inconel 718 composite showed a relatively high average microhardness of 495.08 HV0.5, a low average coefficient of friction of 0.65, and a wear rate of 0.72 × 10−4 mm3/(N m). This research provides a fundamental understanding of high-content ceramic reinforced nickel matrix composites by laser-directed energy deposition.
Funder
National Natural Science Foundation of China
The Basic Strengthening Program
Key Research and Development Program of Jiangsu Province
Nanjing University of Aeronautics and Astronautics Graduate Innovation Base (Laboratory) Open Fund Project
Publisher
Laser Institute of America
Subject
Instrumentation,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献