Affiliation:
1. Fraunhofer Institute for Material and Beam Technology IWS , Winterbergstrasse 28, Dresden 01277, Germany
Abstract
Laser cladding is widely used in the industry to precisely apply tailored surface coatings, as well as three-dimensional deposits for repair and additive manufacturing of metallic parts. However, the processing of larger components is economically challenging mainly because of low deposition rates. At Fraunhofer IWS, a Laserline fiber-coupled diode laser with 20 kW power has been employed for over a decade to develop competitive coating solutions with powder-based laser cladding. The deposition rates achieved with this technology is comparable to common PTA technique at the same time bringing significant advantages in terms of reduced heat affected zone, distortion, and savings in material resources. While high-power powder-based laser cladding is an industrially established coating technology, for example, to coat hydraulic cylinders or most recently brake discs, a high-productivity solution for wire-based processes is still challenging. Fraunhofer IWS has developed a new nozzle for high-power high-productivity laser wire cladding for coating and additive manufacturing, the so-called COAXquattro. This system enables to feed at the same time four wires into the melt pool, reaching deposition efficiencies in the same range as a powder-based laser process. For selected materials, the improvement in coating quality compared to powder laser cladding is achieved. Furthermore, with COAXquattro system simultaneous feeding of powder particles to wire cladding presents a great potential for in situ alloying and cost-effective production of new compositions on material alloying or hardmetal-reinforced composites for coating application and 3D additive manufacturing.
Publisher
Laser Institute of America
Subject
Instrumentation,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献