Quality classification model with machine learning for porosity prediction in laser welding aluminum alloys

Author:

Rivera Joys S.1ORCID,Gagné Marc-Olivier2ORCID,Tu Siyu2ORCID,Barka Noureddine1ORCID,Nadeau François2ORCID,Ouafi Abderrazak El1ORCID

Affiliation:

1. Department of Mathematics, Computer Science and Engineering, Université du Québec à Rimouski 1 , Rimouski, Québec, Canada

2. National Research Council Canada—Aluminum Technology Centre 2 , Québec City, Canada

Abstract

The growing implementation of aluminum alloys in industry has focused interest on studying transformation processes such as laser welding. This process generates different kinds of signals that can be monitored and used to evaluate it and make a quality analysis of the final product. Internal defects that are difficult to detect, such as porosity, are one of the most critical irregularities in laser welding. This kind of defect may result in a critical failure of the manufactured goods, affecting the final user. In this research, a porosity prediction method using a high-speed camera monitoring system and machine learning (ML) algorithms is proposed and studied to find the most performant methodology to resolve the prediction problem. The methodology includes feature extraction by high-speed X-ray analysis, feature engineering and selection, imbalance treatment, and the evaluation of the ML algorithms by metrics such as accuracy, AUC (area under the curve), and F1. As a result, it was found that the best ML algorithm for porosity prediction in the proposed setup is Random Forest with a 0.83 AUC and 75% accuracy, 0.75 in the F1 score for no porosity, and 0.76 in the F1 score for porosity. The results of the proposed model and methodology indicate that they could be implemented in industrial applications for enhancing the final product quality for welded plates, reducing process waste and product quality analysis time, and increasing the operational performance of the process.

Publisher

Laser Institute of America

Subject

Instrumentation,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference67 articles.

1. A survey of welding robot intelligent path optimization;J. Manuf. Process,2020

2. Applications of laser welding in the shipbuilding industry

3. Applications of laser welding in the automotive industry

4. Defect formation mechanisms and preventive procedures in laser welding,2013

5. Introduction: Fundamentals of laser welding,2013

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3