Development and assessment of a methodology for abstraction of topology optimization results to enable the substitution of optimized beams

Author:

Röver Tim1ORCID,Bader Maximilian1,Asami Karim1ORCID,Emmelmann Claus1ORCID,Kelbassa Ingomar23

Affiliation:

1. Institute of Laser and System Technologies (iLAS), Hamburg University of Technology (TUHH) 1 , Harburger Schloßstraße 28, 21079 Hamburg, Germany

2. Fraunhofer Research Institution for Additive Manufacturing Technologies IAPT 2 , Am Schleusengraben 14, 21029 Hamburg, Germany

3. Institute for Industrialization of Smart Materials (ISM), Hamburg University of Technology (TUHH) 3 , Eißendorfer Straße 40, 21073 Hamburg, Germany

Abstract

Improving mechanical topology optimization (TO) results by substituting biomimetic beams is one possibility to achieve designs of mechanical components that are highly sustainable and show good mechanical performance. Because of their geometric complexity, such designs were found to be well-suited for production by laser additive manufacturing. One obstacle of incorporating biomimetics beams in TO designs is the lack of detailed design methodologies. Röver et al. [“Methodology for integrating biomimetic beams in abstracted topology optimization results,” in Proceedings of the ASME 2022 International Mechanical Engineering Congress and Exposition. Volume 4: Biomedical and Biotechnology; Design, Systems, and Complexity Columbus, OH, 30 October–3 November (ASME, New York, 2022)] proposed a corresponding design concept. Building on their concept, we present in this work a detailed methodology for abstraction of TO results to a design consisting of ball nodes and cylindrical beams. Using such an auxiliary design, the internal forces and moments of the beams can be evaluated to allow for the substitution of suitable biomimetic beams to generate biomimetic component designs in a next step. We present a skeletonization algorithm based on the potential field approach. Using the skeletonization and an additional analysis of the dimensions of the beams in the TO result, the algorithm develops an auxiliary design of the original TO result. The final algorithm was applied to three common TO results to obtain one auxiliary component design each. The developed algorithm was found to generate abstractions that were well-suited for use in the methodology proposed in Röver et al. [“Methodology for integrating biomimetic beams in abstracted topology optimization results,” in Proceedings of the ASME 2022 International Mechanical Engineering Congress and Exposition. Volume 4: Biomedical and Biotechnology; Design, Systems, and Complexity Columbus, OH, 30 October–3 November (ASME, New York, 2022)], because internal forces and moments in the abstracted beams could be evaluated with less effort. Therefore, our work contributes to a detailed design methodology for biomimetic mechanical components in the field of design for additive manufacturing.

Publisher

Laser Institute of America

Subject

Instrumentation,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3