Surface tension derivation from laser-generated keyholes

Author:

Volpp Joerg1ORCID,Zaiss Felix2ORCID,Hagenlocher Christian2ORCID,Graf Thomas2ORCID

Affiliation:

1. Department of Engineering Science, University West 1 , 461 86 Trollhättan, Sweden

2. Institut für Strahlwerkzeuge (IFSW), University of Stuttgart 2 , Pfaffenwaldring 43, 70569 Stuttgart, Germany

Abstract

Surface tension is an essential material property that defines many aspects of thermal processes involving liquids. Metal materials have high melting temperatures, and surface tension could often be measured around melting temperature and is, therefore, known for many pure materials and simple material systems. However, high-energy input during laser, electron beam, or plasma processes is known to increase the material temperatures far above the melting point. To build theoretical models, simulate processes, and increase process understanding, surface tension values at those high temperatures would be beneficial to know. However, it can be difficult to create stable circumstances and measure surface tension in those conditions. Therefore, it is suggested in this work to indirectly derive surface tension values from the pressure balance inside keyholes created during laser deep penetration processing. A variety of different keyhole shapes were created using dynamic beam shaping by means of coherent beam combining. From the observed keyhole shapes using inline x-ray observations, temperature distributions on the keyhole walls were calculated using ray tracing. The temperature defines the local recoil pressure that counteracts the surface tension pressure, which contains the surface tension value as the only unknown variable. At increasing temperatures above the boiling point, an increasing surface tension was observed.

Funder

Vetenskapsrådet

Deutsche Forschungsgemeinschaft

Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg

Publisher

Laser Institute of America

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3