Abstract
Increased use of email in daily transactions for many businesses or general communication due to its cost-effectiveness has made emails vulnerable to attacks, including spam. Spam emails are unsolicited messages that are very similar to each other and sent to multiple recipients randomly. This study analyzes the Rotation Forest model and modifies it for spam classification problem. Also, the aim of this study is to create a better classifier. To improve classifier stability, the experiments were carried out on Enron spam, Ling spam, and SpamAssasin datasets and evaluated for accuracy, f-measure, precision, and recall.
Publisher
Ivan Kozhedub Kharkiv National Air Force University KNAFU