Мultivariate analysis for rapid screening and prediction of solid-state compatibility in pharmaceutical preformulation studies-paving the road for machine learning

Author:

Cvetkovska Bogatinovska ElenaORCID,Geškovski NikolaORCID,Petrushevski GjorgjiORCID,Stefov ViktorORCID

Abstract

Multivariate analysis models were developed to evaluate the results obtained from a compatibility study designed for ibuprofen with a large group of different types of excipients, as a possible approach for rapid screening of the incompatibility between the active pharmaceutical ingredient (API) and excipients. The solid-state characterization of the binary mixtures was performed by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) using SIMCA® software were applied for evaluation of the experimentally obtained results. The optimal PCA model for the FTIR spectra explains 96.2 % of the variations in the dataset with good statistical indicators (R2X = 0.960, Q2 = 0.900), which was also the case for the PCA model for the DSC curves (R2X = 0.981, Q2 = 0.866). The applied PLS-DA models have shown similar behaviour to the PCA. Moreover, the main spectral variations in the FTIR spectra and the thermal events in the DSC data were attributed the highest variable importance for the projection (VIP) scores in the corresponding VIP plots, confirming the model capability for predicting ibuprofen interactions. Furthermore, the prediction power of the optimal models for FTIR and DSC experimental data was evaluated by the root mean square error of prediction (RMSEP) of 0.10 and 0.16, respectively. The obtained results demonstrated the potential of multivariate statistical analysis as a machine learning-based technique for screening and prediction of ibuprofen-excipients solid-state compatibility in the preformulation phase of the pharmaceutical development of dosage forms.

Publisher

Society of Chemists and Technologists of Macedonia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3