Comparative analysis of the polarization and morphological characteristics of electrochemically produced powder forms of the intermediate metals

Author:

Nikolic Nebojsa D.,Zivkovic Predrag M.,Jokic Bojan,Pavlovic Miomir G.,Stevanovic Jasmina S.

Abstract

The polarization and morphological characteristics of powder forms of the group of the intermediate metals were examined by the analysis of silver and copper electrodeposition processes at high overpotentials. The pine-like dendrites constructed from the corncob-like forms, very similar to each others, were obtained by electrodeposition of these metals at the overpotential belonging to the plateaus of the limiting diffusion current density. The completely different situation was observed by electrodeposition of silver and copper at the overpotential outside the plateaus of the limiting diffusion current density in the zone of the fast increase of the current density with the overpotential. The silver dendrites, very similar to silver and copper dendrites obtained inside the plateaus of the limiting diffusion current density, were obtained at the overpotential outside the plateau. Due to the lower overpotential for hydrogen evolution for copper, hydrogen produced during copper electrodeposition process strongly affected the surface morphology of copper. The same shape of the polarization curves with the completely different surface morphology of Cu and Ag electrodeposited at overpotentials after the inflection point clearly indicates on the importance of morphological analysis in the investigation of polarization characteristics of the electrodeposition systems. Role of hydrogen as crucial parameter in the continuous change of copper surface morphology from dendrites to the honeycomb-like structures was investigated in detail. On the basis of this analysis, the transitional character of the intermediate metals between the normal and inert metals was considered. The typical powder forms characterizing electrodeposition of the intermediate metals were also defined and systematized.

Publisher

Society of Chemists and Technologists of Macedonia

Subject

General Chemical Engineering,General Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3