Synthesis, solvatochromism, electronic structure and nonlinear optic properties of quinolin-8-yl 2-hydroxybenzoate

Author:

Gümüş Ayşegül,Gülseven Sıdır Yadigar,Sıdır İsa,Gümüş Selçuk

Abstract

Quinolin-8-yl-2-hydroxybenzoate (abbreviated as QHB) was synthesized and investigated both experimentally and theoretically to obtain its physical and electronic properties. The electronic structure and spectral behavior have been determined by using UV-vis absorption and fluorescence spectra in different 11 polarity solvent medium. The absorption band observed at 306 nm-308 nm is found to having mix of π-π* and n-π* electronic transitions due to its geometrical structure in the solution phase. Solvatochromism of QHB is investigated by using Kamlet-Taft and Catalan methods based on the linear solvation energy relationships (LSER). Kamlet-Taft solvatochromic model indicates that spectral shifts of absorption and fluorescence spectra are effectively controlled by dispersion-polarization forces which describe the non-specific interactions. Solvatochromic model of Catalan designates that solute-solvent interaction is governed by solvent polarity in the absorption spectra and by solvent acidity in the fluorescence spectra. Non-specific interactions have greater effect on fluorescence spectra compared to absorption spectra. Computational calculations were performed by the application of B3LYP/6-311+(d,p) level of theory. Conformational analysis is performed for QHB and five staggered conformers are observed on torsional potential energy surfaces. Accordingly, the most stable conformer is found as involving intra-molecular hydrogen bonding. The geometry of the other conformers indicates that the absence of hydrogen bonding gives rise to relatively higher energy.  Frontier molecular orbitals (HOMO, LUMO) and non-linear optical (NLO) parameters have been calculated by B3LYP/6-311+(d,p) level of theory. Theoretical UV spectra both in gas and solution phases have also been investigated by TDDFT-CAM-B3LYP/6-311+(d,p) level of theory.

Publisher

Society of Chemists and Technologists of Macedonia

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3