X-ray diffraction broadening analysis

Author:

Popović Stanko,Skoko Željko

Abstract

The microstructure is very important in research aimed to the development of new materials. The microstructural parameters, crystallite size, crystallite size distribution, crystallite strain, dislocation density and stacking fault probability, play a major role in physical and chemical properties of the material. These parameters can be determined by a proper analysis of X-ray diffraction line profile broadening. The observed XRD line profile of the studied sample, <em>h</em>(<em>ε</em>), is the convolution of the instrumental profile, <em>g</em>(<em>ε</em>), inherent in diffraction, and pure diffraction profile, <em>f</em>(<em>ε</em>), caused by small crystallite (coherent domain) sizes, by faultings in the sequence of the crystal lattice planes, and by the strains in the crystallites. That is, <em>f</em>(<em>ε</em>) is the convolution of the crystallite size/faulting profile, <em>p</em>(<em>ε</em>), and the strain profile, <em>s</em>(<em>ε</em>). The derivation of <em>f</em>(<em>ε</em>) can be performed from the measured <em>h</em>(<em>ε</em>) and <em>g</em>(<em>ε</em>) by the Fourier transform method, usually referred to as the Stokes method. That method does not require assumptions in the mathematical description of <em>h</em>(<em>ε</em>) and <em>g</em>(<em>ε</em>). The analysis of <em>f</em>(<em>ε</em>) can be done by the Warren-Averbach method, which is applied to the Fourier coefficients obtained by the deconvolution. On the other hand, simplified methods (which may bypass the deconvolution) based on integral widths may be used, especially in studies where a good relative accuracy suffices. In order to obtain the relation among integral widths of <em>f</em>(<em>ε</em>), <em>p</em>(<em>ε</em>) and <em>s</em>(<em>ε</em>), one assumes bell-shaped functions for <em>p</em>(<em>ε</em>) and <em>s</em>(<em>ε</em>). These functions are routinely used in the profile fitting of the XRD pattern and in the Rietveld refinement of the crystal structure. The derived crystallite size and strain parameters depend on the assumptions for the profiles <em>p</em>(<em>ε</em>) and <em>s</em>(<em>ε</em>). Integral width methods overestimate both strain and crystallite size parameters in comparison to the Warren-Averbach-Stokes method. Also, the crystallite size parameter is more dependent on the accuracy, with which the profile tails are measured and how they are truncated, than it is the strain parameter. The integral width also depends on the background level error of the pure diffraction profile. The steps and precautions, which are necessary in order to minimize the errors, are suggested through simple examples. The values of the crystallite size and strain parameters, obtained from integral widths derived by the Stokes deconvolution, are compared with those which followed from the Warren-Averbach treatment of broadening. Recent approaches in derivation of microstructure are also mentioned in short.

Publisher

Society of Chemists and Technologists of Macedonia

Subject

General Chemical Engineering,General Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3