Mar Menor lagoon (SE Spain) chlorophyll-a and turbidity estimation with Sentinel-2

Author:

Yeley Zhan,Delegido JesusORCID,Erena ManuelORCID,Soria Juan M.ORCID,Ruiz-Verdú AntonioORCID,Urrego PatriciaORCID,Sòria-Perpinyà XavierORCID,Vicente EduardoORCID,Moreno JoseORCID

Abstract

Mar Menor is a Mediterranean Coastal lagoon with high environmental and social value, but has suffered important episodes of contamination in recent years due to heavy rains, sediment dragging and polluting substances mainly from agriculture as well as the entry of mining waste, causing an increase in eutrophication. Water quality variables such as chlorophyll-a concentration [Chl-a] and turbidity, can be studied through its optical properties by remote sensing techniques. In this work, a methodology is proposed for monitoring [Chl-a] and the turbidity of the Mar Menor using Sentinel-2 images. For this purpose, an extensive database of both variables was used consisting of data taken on different dates between 2016 and 2019 at 12 points of Mar Menor. The images were atmospherically corrected using Case 2 Regional Coast Color Processor (C2RCC) version for turbid waters (C2X) to obtain the water surface reflectance. Then several arithmetic relations between database and reflectance bands used in the bibliography for [Chl-a] and turbidity were analyzed. Comparing the results of each one of these relations with the in situ data, decided that the best index for [Chl-a] estimation is the relation (R560 + R705)/ (R560 + R665) with an RMSE = 2.6 mg/m3 and a NRMSE = 9.1 % and for turbidity R705*R705/R490 with an RMSE = 1.5 NTU and a NRMSE= 10.9 %. Finally, by applying these relationships on different dates, thematic maps of [Chl-a] and turbidity of Mar Menor were obtained. One of these images was some days after September 2019 torrential rains, in which a considerable [Chl-a] and turbidity increase was observed

Publisher

Asociacion Iberica de Limnologia

Subject

Water Science and Technology,Ecology,Aquatic Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3