Intestinal P-glycoprotein Expression is Multimodally Regulated by Intestinal Ischemia-Reperfusion

Author:

Terada Yusuke,Ogura Jiro,Tsujimoto Takashi,Kuwayama Kaori,Koizumi Takahiro,Sasaki Shunichi,Maruyama Hajime,Kobayashi Masaki,Yamaguchi Hiroaki,Iseki Ken

Abstract

Purpose. Reactive oxygen species (ROS) have multiple physiological effects that are amount-dependent. ROS are one of the causes of intestinal ischemia-reperfusion (I/R) injury. In this study, we investigated whether the amount of ROS and the degree of intestinal I/R injury affect the expression level of P-glycoprotein (P-gp). Methods. We used hydrogen peroxide (H2O2) as ROS in in vitro experiments. Intestinal I/R model rats, which were subjected 15-min ischemia (I/R-15), were used in in vivo experiments. Results. P-gp expression in Caco-2 cells was increased in response to 1 µM of H2O2 but decreased upon exposure to 10 mM of H2O2. We previously reported that P-gp expression is decreased after intestinal I/R with 30-min ischemia (I/R-30), which time a large amount of ROS is generated. I/R-15 induced slightly less mucosal and oxidative injury than did I/R-30. P-gp expression in the jejunum was increased at 1 h after I/R-15, and ileal paracellular permeability was increased. The blood concentration of tacrolimus, a P-gp substrate, was lower during 0-20 min but was higher during 40-90 min post-administration compared with that in the sham-operated rats. P-gp expression in the ileum was decreased at 6 h after I/R-15, due to abnormal localization of P-gp, resulting in a high blood tacrolimus concentration in rats reperfused for 6 h. Conclusions. ROS multimodally regulate P-gp expression depending on its amount. This is important for understanding the pattern of P-gp expression after intestinal I/R. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.

Publisher

University of Alberta Libraries

Subject

Pharmaceutical Science,Pharmacology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3