Invitro Photo-Controlled Drug Release System Based on Amphiphilic Linear-Dendritic Diblock Copolymers; Self-Assembly Behavior and Application as Nanocarrier

Author:

Namazi Hassan,Jafarirad Saeed

Abstract

Purpose. A simple type of photoresponsive amphiphilic linear-dendritic diblock copolymer has been synthesized and investigated for its ability to act as a drug carrier. These structures contain hydrophilic polyethylene oxide monomethyl ether (PEOM) as hydrophilic block and carbosiloxane dendritic branches as hydrophobic block grafted by two and six Magneson II as azo chromophore, PEOM-Azo, 2 and PEOM-Azo, 6 respectively. Self-assembling of the amphiphilic macromolecules of PEOM-Azo, 2 and PEOM-Azo, 6, briefly were represented as PEOM-Azo [2, 6], leads to the formation of their micellar aggregates in aqueous media. Method. Their micellar properties such as critical micelle concentration (CMC), aggregation number and thereby total numbers of azo-groups in each micellar aggregates were determined. Also, they were characterized by TEM, SEM and DLS. Results. The unloaded aggregates examined under UV light (366 nm), which were observed to be smaller than 300 nm. The release patterns of the encapsulated drug molecule from these aggregates were investigated as regulated by the PEOM-Azo [2, 6] systems in trans and cis forms. Conclusion. A comparison of the release behavior of the loaded PEOM-Azo [2, 6] systems indicated that the release rate of the encapsulated active molecules from the carriers was slower when the azo moieties were in trans form as compared to that the azo in the cis form. The in vitro release behavior of drug from these polymeric systems represents potential of the carriers for controlled drug delivery. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.

Publisher

University of Alberta Libraries

Subject

Pharmaceutical Science,Pharmacology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3