Microdialysis-directed Intra-tumor Pharmacokinetic Modeling of Methotrexate in Mice and Humans

Author:

Alsulimani Helal H.,Kim Jonghan,Sani Shabnam N.

Abstract

Purpose. To develop a quantitative pharmacokinetic model to characterize the disposition of methotrexate (MTX) at tumor site in tumor-bearing mice and to predict MTX concentrations in the human tumor. Methods. The plasma profiles of MTX were obtained from normal mice, while microdialysis technique was employed to characterize the time course of MTX in tumor from breast tumor-bearing mice. Disposition profiles of plasma and tumor were analyzed by a hybrid physiologically-based pharmacokinetic (hPBPK) model that incorporates physiologically-relevant parameters such as tumor blood flow and volume, while plasma concentrations were used as a forcing input into the vascular-interstitial spaces of the tumor. The plasma profiles were initially described by a biexponential decay model to obtain a forcing function that enters into the vascular-interstitial spaces in the tumor. Using a defined forcing function, the tumor free concentrations were fitted to the hPBPK model. Based on the model developed, sensitivity analysis was conducted with a perturbation of PK parameters to predict different scenarios of intratumoral MTX transport. The relevant physiological PK parameters from the mouse model were then scaled-up and utilized to simulate human tumor concentrations. Results. The mouse hPBPK model adequately characterized the concentration-time profiles of MTX in both plasma and tumor and produced various transfer rate constants between plasma and tumor. Our model was also able to reasonably predict MTX concentrations in the human tumor when human physiological data were utilized. Conclusions. The hPBPK model was able to quantitatively characterize the atypical transport of MTX in the tumor, supporting the idea that microdialysis is a valuable tool to study tumor biodistribution of drugs and to predict tumor concentrations in humans based on the pre-clinical data. This information can ultimately aid in the development of anticancer drugs with improved PK profiles. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.

Publisher

University of Alberta Libraries

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3