Development and Characterization of Niosomal Formulations of Doxorubicin Aimed at Brain Targeting

Author:

Bragagni Marco,Mennini Natascia,Ghelardini Carla,Mura Paola

Abstract

ABSTRACT - Purpose. The aim of the present work was the development and characterization of a niosomal formulation functionalized with the glucose-derivative N-palmitoylglucosamine (NPG) to obtain a potential brain targeted delivery system for the anticancer agent doxorubicin. Methods. Five different methods have been examined for vesicle preparation. Light scattering and transmission electron microscopy were used for vesicle characterization, in terms of mean size, homogeneity and Zeta potential, and selection of the best composition and preparation conditions for developing NPG-functionalized niosomes. Drug entrapment efficiency was determined after separation of loaded from unloaded drug by size exclusion chromatography or dialysis. Preliminary in vivo studies were performed on rats, injected i.v. with 12 mg/kg of doxorubicin as commercial solution (Ebewe, 2mg/mL) or NPG-niosomal formulation. Drug amounts in the blood and in the major organs of the animals, sacrificed 60 min post injection, were determined by HPLC. Results. The selected formulation consisted in Span:cholesterol:Solulan:NPG (50:40:10:10 mol ratio) vesicles obtained by thin-layer evaporation, leading to homogeneous vesicles of less than 200 nm diameter. This formulation was used for preparation of NPG-niosomes loaded with doxorubicin (mean size 161±4 nm, encapsulation efficacy 57.8±1.8%). No significant changes (P>0.05) in vesicle dimensions, Zeta potential or entrapment efficiency were observed after six months storage at room temperature, indicative of good stability. I.v. administration to rats of the NPG-niosomal formulation allowed for reducing drug accumulation in the heart and keeping it longer in the blood circulation with respect to the commercial formulation. Moreover, a doxorubicin brain concentration of 2.9±0.4 µg/g was achieved after 60 min, while the commercial solution yielded undetectable drug brain concentrations (

Publisher

University of Alberta Libraries

Subject

Pharmaceutical Science,Pharmacology

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3