A Simple Method to Extract Whole Apolipoproteins for the Preparation of Discoidal Recombined High Density Lipoproteins as Bionic Nanocarriers for Drug Delivery

Author:

Zhang Wenli,Wang Ji,Jia Junting,Chen Liang,Wu Zimei,Liu Jianping

Abstract

Purpose: To develop a simple method to extract the whole apolipoproteins (apo) including apoA-I in native high density lipoproteins (HDLs) and prepare discoidal Tanshinone IIA-loaded reconstituted HDL (TA-rHDLs) as a dual functional drug delivery system with plaque-site target and therapeutic promises in atherosclerotic lesions. Methods: A method based on isoelectric precipitation coupled with organic solvent precipitation was developed to isolate the whole apolipoproteins (apos). TA-rHDLs were prepared by incubating the resultant apos with liposomes and the incubation conditions were optimized using fluorescence quenching experiment. TA-rHDLs were characterized in terms of size, zeta potential, morphology, interaction between lipid and apos,  safety, and bionic function. Results: The extraction results showed that the yield of the HDL apos was 82.4%, with 59% being apoA-I type, similar ratio of apoA-I in the native apos. TA-rHDL prepared were disc-like with an average diameter of 157.6 ± 4.8 nm, zeta potential of -20.90 ± 0.15 mV, and entrapment efficiency of (90.13 ± 1.4) %. The interaction between the lipids and apos was electrostatic and hydrophobic force and was associated with amino acid sequence. Haemolysis and cytotoxicity assays showed good biocompatibility of TA-rHDL. Sterol efflux assay from macrophages mediated by TA-rHDLs and structure remodeling behavior from discs to spheres proved that TA-rHDL could resemble the biological activity of native nascent HDL irrespective of the size. Conclusions: The simple approach to isolate apos may provide a convenient and economical resource to support the development of rHDL as a potential targeting nanocarrier for lipophilic cardiovascular drugs. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.

Publisher

University of Alberta Libraries

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3