Investigation of DNA Spectral Conformational Changes and Polymer Buffering Capacity in Relation to Transfection Efficiency of DNA/Polymer Complexes

Author:

Cherng Jong Yuh

Abstract

Purpose. The relation between transfection efficiency of DNA/polymer complexes and DNA conformational alterations is investigated. The buffering capacity of several synthetic polymers is also studied to relate their performance in transfection efficiency. Methods. The cationic polymer/DNA interaction was evaluated by measuring the alteration of DNA secondary structures in solution before and after the addition of polymer with ATR-FTIR technique. The degree of protonation in aqueous cationic polymers is varied upon pH and different structures. A polymer capable of protonation acts like a proton sponge to react with H+ in titration with HCl. This characteristic was evaluated in relation to transfection efficiency because the capacity would help the release of endocytotic DNA from endosome/lysosome on its way to expression. Results. IR results show that the antisymmetric PO2- vibration of DNA (at 1224 cm-1) shifts toward lower frequencies in complexation with PEI or PLLys (these polymers are able to transfect DNA). By contrast, the antisymmetric PO2- vibration of DNA in presence of PDAMA or dextran (these polymers are poor in DNA transfection) shows a shifting to higher frequencies or no alteration was observed. Interestingly, the polymers with best performance in transfection efficiency are in this order: PEI>PDMAEMA>PLLys>PDAMA>dextran which is in the same order as their polymer buffering capacity. These facts indicate polymers possessing better buffering capacity could result in higher transfection efficiency. Also, we have demonstrated in this paper that the antisymmetric PO2- stretching vibration in IR spectra is sensitive while binding of cationic polymers to DNA. These findings are useful for the development of polymer-based gene delivery systems with better performance in vitro and in vivo

Publisher

University of Alberta Libraries

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3