Positron Emission Tomography (PET) and Pharmacokinetics: Classical Blood Sampling Versus Image-Derived Analysis of [18F]FAZA and [18F]FDG in a Murine Tumor Bearing Model

Author:

Jans Hans-Soenke,Yang Xiao-Hong,Brocks Dion R,Kumar Piyush,Wuest Melinda,Wiebe Leonard I

Abstract

Purpose: Pharmacokinetic (PK) data are generally derived from blood samples withdrawn serially over a defined period after dosing. In small animals, blood sampling after dosing presents technical difficulties, particularly when short time intervals and frequent sampling are required. Positron emission tomography (PET) is a non-invasive functional imaging technique that can provide semi-quantitative temporal data for defined volume regions of interest (vROI), to support kinetic analyses in blood and other tissues. The application of preclinical small-animal PET to determine and compare PK parameters for [18F]FDG and [18F]FAZA, radiopharmaceuticals used clinically for assessing glucose metabolism and hypoxic fractions, respectively, in the same mammary EMT6 tumor-bearing mouse model, is reported here. Methods: Two study groups were used: normal BALB/c mice under isoflurane anesthesia were intravenously injected with either [18F]FDG or [18F]FAZA. For the first group, blood-sampling by tail artery puncture was used to collect blood samples which were then analyzed with Radio-microTLC. Dynamic PET experiments were performed with the second group of mice and analyzed for blood input function and tumor uptake utilizing a modified two compartment kinetic model. Heart and inferior vena cava vROIs were sampled to obtain image-derived data. PK parameters were calculated from blood samples and image-derived data. Time-activity curves (TACs) were also generated over regions of liver, kidney and urinary bladder to depict clearance profiles for each radiotracer. Results: PK values generated by classical blood sampling and PET image-derived analysis were comparable to each other for both radiotracers. Heart vROI data were suitable for analysis of [18F]FAZA kinetics, but metabolic uptake of radioactivity mandated the use of inferior vena cava vROIs for [18F]FDG analysis. While clearance (CL) and blood half-life (t½) were similar for both [18F]FDG and [18F]FAZA for both sampling methods, volume of distribution yielded larger differences, indicative of limitations such as partial volume effects within quantitative image-derived data. [18F]FDG underwent faster blood clearance and had a shorter blood half-life than [18F]FAZA. Kinetic analysis of tumor uptake from PET image data showed higher uptake and longer tumor tissue retention of [18F]FDG, indicative of the tumor’s glucose metabolism rate, versus lower tumor uptake and retention of [18F]FAZA. While [18F]FAZA possesses a somewhat greater hepatobiliary clearance , [18F]FDG clears faster through the renal system which results in faster radioactivity accumulation in the urinary bladder. Conclusions: The present study provides a working example of the applicability of functional PET imaging as a suitable tool to determine PK parameters in small animals. The comparative analysis in the current study demonstrates that it is feasible to use [18F]FDG PET and [18F]FAZA PET in the same model to analyze their blood PK parameters, and to estimate kinetic parameters for these tracers in tumor. This non-invasive imaging-based determination of tissue kinetic parameters facilitates translation from pre-clinical to clinical phases of drug development. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.

Publisher

University of Alberta Libraries

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3