Functionalized Caprolactone-Polyethylene Glycol Based Thermo-Responsive Hydrogels of Silibinin for the Treatment of Malignant Melanoma

Author:

Makhmalzadeh Behzad Sharif,Molavi Ommoleila,Vakili Mohammad Reza,Zhang Hai-Feng,Solimani Amir,Abyaneh Hoda Soleymani,Loebenberg Raimar,Lai Raymond,Lavasanifar Afsaneh

Abstract

Purpose: Silibinin, is a natural compound, which has shown anticancer activity in various malignancies. In this study, we evaluated the anticancer effects of silibinin in B16-F10 melanoma cells and developed a novel thermoresponsive hydrogel for local delivery of this compound. Method: A thermoresponsive hydrogel loaded with silibinin was prepared using triblock copolymers of poly[(α-benzyl carboxylate-e-caprolactone)-co-(α-carboxyl-e-caprolactone)]ran-b-PEG-b-[(α-benzyl carboxylate-e-caprolactone) -co-(α-carboxyl-e-caprolactone)]ran (PCBCL-b-PEG-b-PCBCL), namely PolyGelTM, and compared with a Pluronic F-127 formulation of silibinin. Sol-gel transition temperature of hydrogels was measured by inverse flow method and modulated differential scanning calorimetry (MDSC). Silibinin loading efficiency was measured by HPLC. The MTT and clonogenic assays were used to assess the cytotoxicity and anti-proliferative effects of silibinin on B16-F10 melanoma cells. Flow cytotmetry was used to quantify the induced level of apoptosis and measure the intracellular level of activated STAT3 (pSTAT3) following silibinin treatment in B16.F10 cells. The effects of silibinin on the activation of oncogenic proteins were also evaluated by western blot. Results: Silibinin inhibited cell proliferation (IC50 = 67 µM), provoked cell cycle arrest, induced apoptosis, suppressed key oncogenic pathways (i.e STAT3 and MEK/ERK), and enhanced the cytotoxic effects of doxorubicin in B16-F10 cells. Both PolyGelTM and Pluronic F-127 hydrogels were effective in loading silibinin. A lower drug release pattern within 24h, fitting first- order release kinetics, was observed for the release of silibinin from both gels compared to free drug.  PolyGelTM demonstrated enhanced percutaneous absorption of silibinin through increasing mouse skin intracellular lipid fluidity as documented by DSC of skin following PolyGelTM use. Silibinin loaded in PolyGel TM inhibited the growth of B16-F10 cells (IC50 = 30 µM) and effectively suppressed pSTAT3 activity in B16-F10 cells at 10 µM. Conclusion: Our results imply a great potential for PolyGel TM formulations of silibinin for local treatment of malignant melanoma. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s content page.__________________________________________________________

Publisher

University of Alberta Libraries

Subject

Pharmaceutical Science,Pharmacology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3