Monoterpenoids Induce Agonist-Specific Desensitization of Transient Receptor Potential Vanilloid-3 (TRPV3) ion Channels

Author:

Sherkheli Muhammad Azhar,Benecke Heike,Doerner Julia Franca,Kletke Olaf,Vogt-Eisele A. K.,Gisselmann Guenter,Hatt Hanns

Abstract

Transient receptor potential vanilloid-3 (TRPV3) is a thermo-sensitive ion channel expressed in skin keratinocytes and in a variety of neural cells. It is activated by warmth as well as monoterpenoids including camphor, menthol, dihydrocarveol and 1,8-cineol. TRPV3 is described as a putative nociceptor and previous studies revealed sensitization of the channel during repeated short-term stimulation with different agonists. In the present investigation TRPV3 was transiently expressed in either Xenopus oocytes or HEK293 cells. Whole-cell voltage-clamp techniques were used to characterize the behavior of TRPV3 when challenged with different agonists. Similarly, a human keratinocyte-derived cell line (HaCaT cells) was used to monitor the behavior of native TRPV3 when challenged with different agonists. We report here that prolonged exposure (5-15 minutes) of monoterpenoids results in agonist-specific desensitization of TRPV3. Long-term exposure to camphor and 1,8-cineol elicits desensitizing currents in TRPV3 expressing oocytes, whereas the non-terpenoid agonist 2-APB induces sustained currents. Agonist-specific desensitization of endogenous TRPV3 was also found in HaCaT cells, which may be taken as a representative for the native system. Terpenoids have a long history of use in therapeutics, pharmaceuticals and cosmetics but knowledge about underpinning molecular mechanisms is incomplete. Our finding on agonist-induced desensitization of TRPV3 by some monoterpenoids displays a novel mechanism through which TRP channels could be functionally modulated. Therefore, we conclude that desensitization of TRPV3 channels might be the molecular basis of action for some of the medicinal properties of camphor and 1,8-cineol.

Publisher

University of Alberta Libraries

Subject

Pharmaceutical Science,Pharmacology

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3