Low-Surfactant Microemulsions for Enhanced Topical Delivery of Poorly Soluble Drugs

Author:

Shalviri Alireza,Sharma Avinash C,Patel Dipak,Sayani Amyn

Abstract

Purpose: To develop and characterize low-surfactant microemulsion (ME) gels to enhance topical delivery of poorly soluble drugs. Method: Five low surfactant ME formulations were manufactured following the construction of pseudo-ternary phase diagrams. The MEs were screened for their ability to dissolve a poorly soluble new chemical entity (Model Drug X). Various viscosity imparting agents like Carbopol 934, Colloidal Silica, HPMC K100M, Lubrajel NP, and Xanthan Gum were evaluated for the manufacture of these ME gels. Each ME gel was then further evaluated for physical stability, including assessing rheological profiles. In vitro release profiles were also determined and compared to a conventional ointment. Results: Three of the five low surfactant MEs developed (ME1, ME4 and ME5) were capable of dissolving Model Drug X up to 14 fold higher than the conventional ointment formulation. ME1 and ME4 gels comprising Xanthan gum or Carbopol 934 were physically stable, while ME5 gel was stable only with Colloidal Silica. The ME5 gel with Colloidal Silica showed an irreversible increase in its elastic modulus when exposed to high temperature, indicating that the formulation would be less suitable for commercial use. The Xanthan Gum and Colloidal Silica gels yielded significantly higher release rates (8 - 10 fold) compared to a conventional ointment and formulations containing Carbopol 934. The significant difference in drug release rates between Xanthan Gum and Carbopol 934 indicated that choice of viscosity imparting agent played an important role in governing drug release from ME gels. Conclusion: ME gels were developed with low surfactant concentrations and improved formulation characteristics, which increased the solubility and subsequent release of a poorly soluble drug. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.

Publisher

University of Alberta Libraries

Subject

Pharmaceutical Science,Pharmacology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3