Drug Discovery Inspired by Mother Nature: Seeking Natural Biochemotypes and the Natural Assembly Rules of the Biochemome

Author:

Gu Qiong,Yan Xin,Xu Jun

Abstract

Purpose. The Human Genome Project is producing a new biological ‘periodic table’, which defines all genes for making macromolecules (proteins, DNA, RNA, etc) and the relations between genes and their biological functions. We now need to consider whether to initiate a biochemome project aimed at discovering biochemistry’s ‘periodic table’, which would define all molecular parts for making small molecules (natural products) and the relations between the parts and their functions to regulate genes. By understanding the Biochemome, we might be able to design biofunctional molecules based upon a set of molecular parts for drug innovation. Methods. A number of algorithms for processing chemical structures are used to systematically derive chemoyls (natural building blocks) from a database of compounds identified in Traditional Chinese Medicine (TCM). The rules to combine chemoyls for biological activities are then deduced by mining an annotated TCM structure-activity database (ATCMD). Based upon the rules and the basic chemoyls, a chemical library can be biochemically profiled, virtual synthetic routes can be planned, and lead compounds can be identified for a specific drug target. Conclusions. The Biochemome is the complete set of molecular components (chemoyls) in an organism and Biochemomics studies the rules governing their assembly and their evolution, together with the relations between the Biochemome and drug targets. This approach provides a new paradigm for drug discovery that is based on a comprehensive knowledge of the synthetic origins of biochemical diversity, and helps to direct biomimetic syntheses aimed at assembling quasi-natural product libraries for drug screening.   This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.

Publisher

University of Alberta Libraries

Subject

Pharmaceutical Science,Pharmacology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3