Bioreduction of Idarubicin and Formation of ROS Responsible for DNA Cleavage by NADPH-Cytochrome P450 Reductase and its Potential Role in the Antitumor Effect

Author:

Çelik Haydar,Arinç Emel

Abstract

PURPOSE. Idarubicin is a clinically effective synthetic anthracycline analog used in the treatment of several human neoplasms. Anthracyclines have the potential to undergo bioactivation by flavoenzymes to free radicals and thus exert their cytotoxic actions. In this study, our main objective was to investigate the possible involvement of NADPH-cytochrome P450 reductase in the bioreductive activation of idarubicin to DNA-damaging species. METHODS. A pBR322 plasmid DNA damage assay was used as a sensitive method for detecting strand breaks in DNA exposed to idarubicin in the presence of P450 reductase and cofactor NADPH under various incubation conditions. In addition, the rates of idarubicin reduction by P450 reductases purified from phenobarbital-treated rabbit liver, beef liver and sheep lung microsomes were determined by measuring NADPH oxidation at 340 nm. RESULTS. The plasmid DNA experiments demonstrated that idarubicin could undergo bioreduction by P450 reductase with the resulting formation of DNA strand breaks. The antioxidant enzymes SOD and catalase, and hydroxyl radical scavengers, DMSO and thiourea, afforded significant levels of protection against idarubicin-induced DNA strand breaks. These findings suggested that DNA damage by idarubicin occurs through a mechanism which involves its redox cycling with P450 reductase to generate reactive oxygen species (ROS). The extent of DNA damage by idarubicin was found to increase with increasing concentrations of drug or enzyme as well as with increasing incubation time. The capacity of idarubicin to induce DNA damage under above incubation conditions was compared with that of a model compound, mitomycin C. Finally, enzyme assays carried out with purified P450 reductases revealed that idarubicin exhibited about two-fold higher rate of reduction than mitomycin C. CONCLUSION. Our findings implicated bioreduction of idarubicin by P450 reductase and subsequent redox cycling under aerobic conditions as being one mode of idarubicin action potentially contributing to its antitumor effect.

Publisher

University of Alberta Libraries

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3