Artificial Neural Network Modeling for Drug Dialyzability Prediction

Author:

Daheb Kahina,Lipman Mark L.,Hildgen Patrice,Roy Julie J

Abstract

Purpose. The purpose of this study was to develop an artificial neural network (ANN) model to predict drug removal during dialysis based on drug properties and dialysis conditions. Nine antihypertensive drugs were chosen as model for this study. Methods. Drugs were dissolved in a physiologic buffer and dialysed in vitro in different dialysis conditions (UFRmin/UFRmax, with/without BSA). Samples were taken at regular intervals and frozen at -20ºC until analysis. Extraction methods were developed for drugs that were dialysed with BSA in the buffer.  Drug concentrations were quantified by high performance liquid chromatography (HPLC) or mass spectrometry (LC/MS/MS). Dialysis clearances (CLDs) were calculated using the obtained drug concentrations.  An ANOVA with Scheffe’s pairwise adjustments was performed on the collected data in order to investigate the impact of drug plasma protein binding and ultrafiltration rate (UFR) on CLD. The software Neurosolutions® was used to build ANNs that would be able to predict drug CLD (output). The inputs consisted of dialysis UFR and the herein drug properties: molecular weight (MW), logD and plasma protein binding. Results. Observed CLDs were very high for the majority of the drugs studied. The addition of BSA in the physiologic buffer statistically significantly decreased CLD for carvedilol (p= 0.002) and labetalol (p<0.001), but made no significant difference for atenolol (p= 0.100). In contrast, varying UFR does not significantly affect CLD (p>0.025). Multiple ANNs were built and compared, the best model was a Jordan and Elman network which showed learning stability and good predictive results (MSEtesting = 129). Conclusion. In this study, we have developed an ANN-model which is able to predict drug removal during dialysis. Since experimental determination of all existing drug CLDs is not realistic, ANNs represent a promising tool for the prediction of drug CLD using drug properties and dialysis conditions. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.

Publisher

University of Alberta Libraries

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3