Mechanism of Dissolution Enhancement and Bioavailability of Poorly Water Soluble Celecoxib by Preparing Stable Amorphous Nanoparticles

Author:

Liu Yinghui,Sun Changshan,Hao Yanru,Jiang Tongying,Zheng Li,Wang Siling

Abstract

Purpose: Nanoparticle engineering offers promising methods for the formulation of poorly water soluble drug compounds. The aim of the present work was to enhance dissolution and oral bioavailability of poorly water-soluble celecoxib (CXB) by preparing stable CXB nanoparticles using a promising method, meanwhile, investigate the mechanism of increasing dissolution of CXB. Methods: CXB nanoparticles were produced by combining the antisolvent precipitation and high pressure homogenization (HPH) approaches in the presence of HPMC E5 and SDS (2:1, w/w). Then the CXB nanosuspensions were converted into dry powders by spray-drying. The effect of process variables on particle size and physical state of CXB were investigated. The physicochemical properties of raw CXB and CXB nanoparticles were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), X-ray photoelectron spectra (XPS), fourier transform infrared (FT-IR) spectroscopy, diffrential scanning calorimetry (DSC), as well as, measuring the particle size and contact angle. Additionally, the studies of in-vitro drug dissolution and oral bioavailability in beagle dogs of nanoparticles were performed. Results: The images of SEM revealed spherical CXB nanoparticles. The DSC and XRPD results indicated that the antisolvent precipitation process led to the amorphization of CXB. Under storage, the amorphous CXB nanoparticles showed promising physical stability. The XPS data indicated the amorphous CXB nanoparticles exhibited different surface property compared to raw CXB. Hydrogen bonds were formed between the raw CXB and HPMC E5 as proven by the FT-IR spectra. CXB nanoparticles increased the saturation solubility of CXB fourfold. CXB nanoparticles completely dissolved in the dissolution medium of phosphate buffer (pH 6.8, 0.5% SDS) within 5 min, while there was only 30% of raw CXB dissolved. The Cmax and AUC0–24h of CXB nanoparticles were approximately threefold and twofold greater than those of the Celecoxib Capsules, respectively. Conclusions: The process by combining the antisolvent precipitation under sonication and HPH was a promising method to produce small, uniform and stable CXB nanoparticles with markedly enhanced dissolution rate and oral bioavailability due to an increased solubility that is attributed to a combination of amorphization and nanonization with increased surface area, improved wettability and reduced diffusion pathway.

Publisher

University of Alberta Libraries

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3