Co-delivery of Doxorubicin and PSC 833 (Valspodar) by Stealth Nanoliposomes for Efficient Overcoming of Multidrug Resistance

Author:

Bajelan Elmira,Haeri Azadeh,Vali Amir Masoud,Ostad Seyed Nasser,Dadashzadeh Simin

Abstract

Purpose. This study was aimed at developing co-encapsulated stealth nanoliposomes containing PSC 833, an efficient MDR modulator, and doxorubicin (DOX) in order to increase the effectiveness and decrease adverse effects of the anticancer drug. Methods. In attempt to increase the encapsulation efficiency of drugs, different methods for liposome preparation were tested and the effect of different parameters such as drug to lipid molar ratio, cholesterol mole percent and lipid compositions, were investigated. The final product with a lipid composition of EPC:DSPE-PEG2000:Chol (60:5:30 %mol) was prepared by thin layer film hydration method. After preparation of empty liposomes, DOX and PSC 833 were loaded using ammonium sulfate gradient and remote film loading methods, respectively. Physical characteristics of optimized liposomes (DOX/PSC-L) such as particle size, zeta potential, encapsulation efficiency, in-vitro drugs release and stability were evaluated. Furthermore, in vitro cytotoxicity study of various liposomal formulations as well as drugs, solutions against resistant human breast cancer cell line, T47D/TAMR-6, was evaluated using MTT assay. Results. The best formulation showed a narrow size distribution with average diameter of 91.3 ± 0.2 nm with zeta potential of -6 ± 1.2, the encapsulation efficiency for DOX and PSC 833 were more than 95% and 65.5%, respectively. In DOX-resistant T47D/TAMR-6 cells, dual-agent stealth liposomes showed significantly greater cytotoxicity (P < 0.05) than free DOX and liposomal DOX plus free PSC 833 treatments. Conclusions. Co-encapsulation of DOX and PSC 833 presents a promising anticancer formulation, capable of effective reversal of drug resistance, and should be explored further in therapeutic studies with animal tumor xenograft models. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.

Publisher

University of Alberta Libraries

Subject

Pharmaceutical Science,Pharmacology

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3