Rheological Investigation of Self-emulsification Process

Author:

Biradar Shailesh V,Dhumal Ravindra S,Paradkar Anant

Abstract

PURPOSE Aim of this study is to investigate the mechanism of self-emulsification through rheological analysis of intermediate liquid crystalline (LC) phase formed during self-emulsification process. METHODS Binary system of tween 80 (T80) and imwitor 742 (I742) was used and different SES were prepared with I742 at 10, 30, 50, 70 and 90% w/w concentration levels. Self-emulsification was monitored by visual observations and droplet size measurement. Mesophases obtained by 50% v/v hydration of SES were utilized for polarizing microscopy, differential scanning calorimetry and rheological studies. RESULTS Good emulsification with nano sized droplets was observed for SES 30% as compared to micron sized droplets for other SES. In polarizing microscopy, formation of intermediate LC phase was observed in all SES. Lamellar phase was evident in 30% SES while other SES exhibited micellar cubic phase. Presence of high level of structurally bound water in thermal analysis confirmed mesophase formation in all SES. In frequency sweep, decrease in elastic modulus, and an increase in phase degree and loss tangent was observed for 30% SES. Exactly opposite trend was seen in other SES. Thus, rheological studies concluded presence of weak and fragile mesophase structure in 30% SES while LC phase structure with little structural buildup was observed in other SES. This weak mesosphere structure in SES 30% presented no or very little resistance against strain induced deformation. Therefore, during emulsification, weak mesophase in SES 30% ruptured with ease and released jet of nanosize droplets compared to coarse droplets for other SES. CONCLUSION This study signifies the effect of viscoelastic properties of intermediate LC phase on self-emulsification performance.

Publisher

University of Alberta Libraries

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3