Staying at the Edge of Privacy: Edge Computing and Impersonal Extraction

Author:

Munn LukeORCID

Abstract

From self-driving cars to smart city sensors, billions of devices will be connected to networks in the next few years. These devices will collect vast amounts of data which needs to be processed in real-time, overwhelming centralized cloud architectures. To address this need, the industry seeks to process data closer to the source, driving a major shift from the cloud to the ‘edge.’ This article critically investigates the privacy implications of edge computing. It outlines the abilities introduced by the edge by drawing on two recently published scenarios, an automated license plate reader and an ethnic facial detection model. Based on these affordances, three key questions arise: what kind of data will be collected, how will this data be processed at the edge, and how will this data be ‘completed’ in the cloud? As a site of intermediation between user and cloud, the edge allows data to be extracted from individuals, acted on in real-time, and then abstracted or sterilized, removing identifying information before being stored in conventional data centers. The article thus argues that edge affordances establish a fundamental new ‘privacy condition’ while sidestepping the safeguards associated with the ‘privacy proper’ of personal data use. Responding effectively to these challenges will mean rethinking person-based approaches to privacy at both regulatory and citizen-led levels.

Publisher

Cogitatio

Subject

Communication

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wieso eigentlich Alexa?;kommunikation@gesellschaft;2023-11-24

2. Towards Edge Computing for 6G Internet of Everything: Challenges and Opportunities;2023 1st International Conference on Advanced Innovations in Smart Cities (ICAISC);2023-01-23

3. Technical Territories;2023

4. Security Provision by Using Detection and Prevention Methods to Ensure Trust in Edge-Based Smart City Networks;IEEE Access;2023

5. Design and implementation of decentralized E-commerce model based on edge computing;Journal of Intelligent & Fuzzy Systems;2021-05-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3