The method of calculation of relative phase permeability functions based on the empirical interfacial interaction function

Author:

Zagorovskiy Mikhail A.1,Stepanov Sergei V.1,Shabarov Alexandr B.1

Affiliation:

1. University of Tyumen

Abstract

The article describes the results of research about the creation of an empirical method for calculation relative phase permeability functions (RPP). The method based on calculation of interfacial interaction function (IIF) from the experimental SCAL data and searching multi-parameter dependences for the parameters of the approximation dependence of IIF. It is proposed to use a function defined on two segments of the domain of definition, for approximation of IIF. The research had been carried out on laboratory data for group of terrigenous and carbonate samples. It had been established that the pressure losses due to interfacial interaction of oil and water during the joint flow of the water-oil mixture are at the maximum for the considered core samples from 60 to 90% of the total pressure losses. Multi-parameter dependences for IIF parameters were found for both groups of data. It was defined that using of multi-parameter dependences for IIF parameters provides the quality of RPP forecast with deviation by 30% for terrigenous samples and by 22% for carbonate samples. There was conducted the study of the influence of data set amount for multi-parameter dependences (training set) on the quality of RPP forecast (test set). It had been established that increasing of data set amount for multi-parameter dependences of IIF parameters has a positive effect on the quality of RPP functions forecast. At the same time, the increasing of data set amount in 2 times leads to decreasing of the average relative error of RPP calculation from 25.5 to 20.9% for terrigenous samples and from 70.3 to 23.6% for carbonate samples.

Publisher

Tyumen State University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3