Pipeline for complex actions recognition in video surveillance systems

Author:

Egorov Yurij A.1,Zaharova Irina G.1

Affiliation:

1. University of Tyumen

Abstract

The development of intelligent video surveillance systems is an area of active research, presenting solutions for use in specific environments. In addition, several problems have been formulated that need to be addressed. This is the problem of recognizing complex actions, which consist of sequences of elementary actions and, as a rule, are difficult to classify from a single frame of a video recording. The present study is devoted to solving the problem of recognizing complex actions on video recordings. The aim of the work is to develop a pipeline for recognizing complex actions that an observed object performs on video recordings. The novelty of the work lies in the approach to action modeling using sequences of elementary actions and a combination of neural networks and stochastic models. The proposed solution can be used to develop intelligent video surveillance systems to ensure security at production facilities, including oil and gas industry facilities. We analyzed video recordings of objects performing various actions. The features describing complex actions and their properties are singled out. The problem of recognition of complex actions represented by a sequence of elementary actions is formulated. As a result, we developed a pipeline implements a combined approach. Elementary actions are described using a skeletal model in graphical form. Each elementary action is recognized using a convolutional neural network, then complex actions are modeled using a hidden Markov model. The developed pipeline was tested on videos of students, whose actions were divided into two categories: cheating and ordinary actions. As a result of the experiments, the classification accuracy of elementary actions was 0.69 according to the accuracy metric, the accuracy of the binary classification of complex actions was 0.71. In addition, the constraints of the developed pipeline were indicated and further ways of enhancing the applied approaches were highlighted, in particular, the study of noise immunity.

Publisher

Tyumen State University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3