Permeability anisotropy in model porous media formed by periodic cubic structures

Author:

Kusayko George N.1ORCID,Igoshin Dmitry E.2,Gubkin Aleksey S.1

Affiliation:

1. University of Tyumen

2. Gazprom VNIIGAZ

Abstract

One way to model porous media is to use periodic structures. The advantage of this approach is the need to describe the fluid flow in the volume of one pore (cell). The flows of a viscous fluid in periodic channel models of porous media formed by structures of three types — cubic simple (CS), cubic body-centered (BCC), and cubic face-centered (FCC) are considered. These structures make it possible to simulate porous media in a wide range of porosity values (1 ÷ 48%). In the selected structures, three special flow directions are distinguished — along the edge of the cube, along the diagonal of the square (the base of the cube), along the diagonal of the cube. For the chosen directions, the fluid flow was calculated over the entire range of the dimensionless parameter α — the degree of intersection of the spheres, which is a model parameter that characterizes the microheterogeneities of the porous medium and makes it easy to reproduce the geometry of the pore space in the numerical solution of the Navier-Stokes equations in direct hydrodynamic modeling. Based on the results of calculations based on the Darcy equation, the permeability coefficients for the three main flow directions were determined and an analysis was carried out on the permeability anisotropy in the selected structures. In a simple cubic structure, the greatest permeability is achieved in the 2nd direction (along the diagonal of the base of the cube), the smallest — along the main direction (along the edge of the cube). In a cubic body-centered structure, the highest permeability is achieved in the 3rd direction (along the diagonal of the cube), the lowest — along the 2nd direction (along the diagonal of the base of the cube). In a cubic face-centered structure, the highest permeability is achieved in the 2nd direction (along the diagonal of the base of the cube), the smallest — along the 3rd direction (along the diagonal of the cube).

Publisher

Tyumen State University

Reference15 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical simulation of the water-ice phase transition in highly permeable water-saturated porous media;Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy;2023-04-14

2. Mass transfer of phases in the flow of oil-water-gas mixture on the core scale;Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3