USE OF NANOFLUIDS BASED ON CARBON NANOPARTICLES TO DISPLACE OIL FROM THE POROUS MEDIUM MODEL

Author:

Pakharukov Yuri V.1,Shabiev Farid K.1,Safargaliev Ruslan F.1,Yezdin Boris S.2,Kalyada Valery V.2

Affiliation:

1. University of Tyumen

2. Novosibirsk State University

Abstract

Graphene, due to its two-dimensional structure, has some unique properties. For example, the thermal conductivity and electrical conductivity of graphene are an order of magnitude higher than the thermal conductivity and electrical conductivity of copper. For this reason, graphene-based nanofluids are now used in many industries. Due to the effect of self-organization of graphene nanoparticles with hydrocarbon molecules, the use of graphene has become possible in the oil industry. Graphene-based nanofluids are used as a displacement fluid to increase the oil recovery coefficient. The displacing ability of graphene-based nanofluids is concentration dependent. An increase in the concentration of nanoparticles entails an increase in viscosity, which negatively affects the performance characteristics of the nanofluid. This problem is partially solved due to the synergistic effect, hybrid nanofluids consisting of nanoparticles of graphene and metals or carbides enhance the displacing ability. Using atomic force microscopy, scanning electron microscopy and molecular modelling methods, this work has studied the formation of supramolecular structures that form a transition region at the oil-nanofluid interface with low surface tension as a result of a synergistic effect in the interaction of graphene planar nanoparticles and silicon carbide nanoparticles covered with graphene layers (Core-shell). The model experiments on a Hele-Shaw cell have shown that in a porous medium, such hybrid nanofluids have a high displacement ability of residual oil. At the same time, the oil — nanofluid interface remains stable, without the formation of viscous fingers. During the study by scanning electron microscopy, a transition region was observed, in the structuring of which the nanoparticles were directly involved. The displacement efficiency of a hybrid nonofluid depends on the concentration of nanoparticles and their interaction.

Publisher

Tyumen State University

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of the processes of additional oil displacement by nanosuspension silicon oxide from a model core;Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy;2024-04-26

2. Formation of a nanostructured film at the “hydrocarbon — graphene nanofluid” interface;Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy;2023-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3