Calculation and experimental method for determining the filtration parameters of the mixture “oil — aqueous solution of surfactants”

Author:

Kuzina Olga A.1,Shabarov Aleksandr B.1ORCID

Affiliation:

1. University of Tyumen

Abstract

The article describes a physical and mathematical cluster precise model and a method for calculating the flow of a two-phase mixture “oil — aqueous solution of surface-active substances” in the pore space of rocks. This method allows us to predict the effect of the type of aqueous solution of surface-active substances and the temperature of the solution on the type of relative permeabilities (RPP). The results of an experimental study of stationary two-phase fluid filtration in a reservoir model through a composite column of core samples are presented. A method is given for determining the relative permeability functions using additional reagents based on the obtained generalized experimental data and calculating pressure losses due to friction, local resistances, and interfacial interaction during the flow of oil-water mixture in the pore channels. Formulas are proposed for calculating losses from interphase interaction taking into account the influence of the type of surfactant and formation temperature. The dependences of the relative amplitude of pressure loss on interfacial interaction and the position of the maximum loss of the bell-shaped curve on the type of surfactant, formation temperature and adhesion work are obtained, which allow approximating the magnitude of pressure loss on interfacial interactions taking into account surfactants and temperature. The effect of temperature on the type of relative permeabilities is shown. It was established that the use of the studied aqueous surfactant solutions instead of water for oil displacement leads to a decrease in the residual oil saturation in the core due to a decrease in interfacial tension at the oil-water interface, which as a result leads to an increase in oil recovery.

Publisher

Tyumen State University

Reference26 articles.

1. Altunin A. E., Sokolov, S. V., Stepanov S. V., Cheremisin N. A., Shabarov A. B. 2013. “A calculation method for obtaining relative permeabilities based on the solution of generalized Bernoulli equations for a system of pore channels”. Neftepromyslovoe delo, no. 8, pp. 40-46. [In Russian]

2. GOST 26450.1-85. 1985. “Mountain rocks. Method for determining the coefficient of open porosity by liquid saturation”. Moscow: Gosstandart SSSR, 8 pp. [In Russian]

3. GOST 26450.2-85. 1985. “Mountain rocks. Method for determining the absolute gas permeability coefficient for stationary and non-stationary filtration”. Moscow: Gosstandart SSSR, 16 pp. [In Russian]

4. GOST R 50097-92. 1992. “Substances are surface-active. Determination of interfacial tension. Drop volume method”. Moscow: Gosstandart Rossii. 18 pp. [In Russian]

5. Kuzina O. A., Semikhina L. P., Shabarov A. B. 2019. “Effect of capillary number and work of adhesion on oil displacement by aqueous solutions of surfactants”. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 5, no. 2, pp. 27-42. DOI: 10.21684/2411-7978-2019-5-2-27-42

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cluster Capillary Core Model for the Calculation of the Relative Phase Permeability for Oil and Water Filtration;Mathematical Models and Computer Simulations;2024-06

2. DIGITAL CLUSTER MODEL OF PORE SPACE AT FLOW OF THREE-PHASE FLOW IN POROUS MEDIUM;Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy;2022

3. FEATURES OF THE MODERNIZATION OF THE PETROPHYSICAL RESEARCH COMPLEX FOR THE IMPLEMENTATION OF THE POSSIBILITY OF GAS FILTRATION TOGETHER WITH WATER-OIL FLUIDS;Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy;2022

4. Mass transfer of phases in the flow of oil-water-gas mixture on the core scale;Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3