STOCHASTIC SIMULATION IN THE FRAMEWORK OF VARIATIONAL-GRID METHOD OF GEOLOGICAL MAPPING

Author:

Plavnik Andrey G.1,Sidorov Andrey N.2

Affiliation:

1. Industrial University of Tyumen

2. Research and Analytical Center for the Rational Use of the Subsoil

Abstract

The need for stochastic modeling of the geological objects properties is due to their significant heterogeneity and the limited amount of data. The existing simulation methods, in their formulation, are largely based on the stochastic representation of the model settings laid down and implemented in kriging. Within the framework of other mapping methods that use other model conditions, developing of novel approaches to the problem formulation and to implementation of stochastic simulations methods is necessary. In this paper, we consider an approach based on the application of the variational-grid method of geological mapping. The method is based on minimizing the quadratic functional with ability taking into account a variety of heterogeneous data, including those of a stochastic nature. The direct stochastic simulation method is proposed and tested. It consists in application of the functionality, which includes three constituent elements responsible for: 1) the data approximation, 2) taking into account general spatial patterns, and 3) for the contribution of the random component to the model constructions. The main features of the method are as follows: 1) a small number of control parameters, 2) a predictable effect of their changing on the simulation results, 3) it provides an easy way to accurately mapping the mathematical expectation of the stochastic simulations options variety, and 4) it is applicable for modeling both continuous and categorical parameters. The mathematical implementation of the approach allows reducing the problem to solving a system of linear algebraic equations with a symmetric and positive definite matrix. This determines the multioptional calculations’ computational efficiency due to a single execution of matrix factorization. The calculations are presented for two groups of data with significantly different both quantitative and model parameters, demonstrating the possibilities and features of the proposed approach implementation under different conditions. The calculations testify that the variograms’ parameters of the stochastic solutions and of the actual data could be coordinated.

Publisher

Tyumen State University

Reference21 articles.

1. Akhmetsafina A. R., Minniakhmetov I. R., Pergament A. Kh. 2010. “Stochastic methods in geological modeling program”. Vestnik TsKR Rosnedra, no. 1, pp. 34-45. [In Russian]

2. Baishev R. V., Kuparev D. A., Krivina T. G. 2009. “Selection of geological model variant in stochastic modeling of Shakhpakhty gas condensate field”. Neftegazovoe delo, no. 12, pp. 28-31. [In Russian]

3. Volkov A. M. 1988. Geological Mapping of Oil and Gas Territories Using a Computer. Moscow: Nedra. 221 pp. [In Russian]

4. Volkov A. M. 1979. “Map building — a variational task”. Geologiya i geofizika, no. 1, pp. 60-65. [In Russian]

5. Demyanov V. V., Savelyeva E. A. 2010. Geostatistics: Theory and Practice. Moscow: Nauka. 327 pp. [In Russian]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3