Unsteady flow of gas at high pressure into a closed volume filled with liquid

Author:

Alekseev Maksim V.1,Vozhakov Ivan S.1,Lezhnin Sergey I.1

Affiliation:

1. Kutateladze Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences

Abstract

Within the framework of 2D (two-dimensional, axisymmetric) and 3D (three-dimensional) formulations of the problem, this article presents a numerical simulation of the process of gas outflow under pressure into a closed container partially filled with liquid. The authors have performed the numerical modeling using the open platform OpenFOAM with the help of a solver based on the method of liquid volumes (VOF method) with a standard k-e turbulence model. A comparison is made with the one-dimensional (1D) asymptotic model, in which the oscillations of the fluid as a whole are determined by the enthalpy balance. A numerical study of the evolution of pressure during gas outflow is carried out. The results show that the physical properties of the fluid used affect the amplitude and frequency of the pulsations. The modeling has shown that gas flows into water in the form of a jet, and a projectile forms in liquid lead near the hole through which it flows out. The significant influence of three-dimensional effects on the evolution of gas outflow into liquid is demonstrated. Satisfactory agreement was obtained for both two-dimensional and three-dimensional calculations and the results obtained using the asymptotic model. For the “gas — water” system, the results of calculations by the asymptotic model give a significant difference from the results of numerical calculations.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

Tyumen State University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3