Materials selection and fabrication nanotechnology of the composite memristor-diode crossbar — the basis of neuroprocessor hardware implementation

Author:

Pisarev Alexander D.1ORCID,Busygin Alexander N.1,Bobylev Andrey N.1,Ebrahim Abdulla H.1,Gubin Alexey A.1,Udovichenko Sergey Yu.1

Affiliation:

1. University of Tyumen

Abstract

To examine the operation of the memory and logic matrices of the neuroprocessor, it is necessary to produce a laboratory composite memristor-diode crossbar, which is the basis of these matrices. For this purpose, the authors of this article have chosen materials and fabrication nanotechnology of Zener diode semiconductor layers and a memristor layer that provide optimal characteristics of the diode and memristors. This article shows that magnetron-sputtering method is optimal for fabrication of both diodes and memristors. Thus, all of composite memristor-diode crossbar layers, including conducting paths, can be fabricated in single technological module. ZnOx was chosen as the n-type semiconductor, the carrier concentration in which is controlled by changing the stoichiometry of the compound during reactive magnetron sputtering. The second p-type layer of the diode was obtained by magnetron sputtering of a silicon target doped with boron. The results show that for the p-Si/ZnOx heterojunction, there is an optimal molar fraction of zinc, which provides the best characteristics of the diode, and an increase in the doping level of the p-Si layer leads to an increase in the nonlinearity of the current-voltage characteristic and a decrease in the voltage of the reversible breakdown. The greatest stability of electrical parameters — switching voltages and resistances in high-conductive and low-conductive states — was achieved in a memristor with doped titanium oxide W/TixAl1-xOy/TiN, which is due not only to the choice of mixed oxide, but also to the choice of its fabrication technology. The measured current-voltage characteristics of separate cells prove the operability of fabricated memristor-diode crossbar. The authors show that the high resistance of the closed diode leads to the almost complete disappearance of the reverse branch of the memristor current — voltage characteristic, since the small resistance of the memristor is lost against the background high resistance of the diode. The developed unified nanotechnology for fabricating a combined memristor-diode crossbar allows the production of ultra-large memory and logic matrices of a neuroprocessor based on one technological module with reactive magnetron sputtering.

Funder

Российский Фонд Фундаментальных Исследований

Publisher

Tyumen State University

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3