THE ANALYSIS OF THE BINARY HOMOGENEOUS SOLUTION FILM BEHAVIOR UNDER THERMAL ACTION

Author:

BORODINA Kseniia A.1

Affiliation:

1. University of Tyumen

Abstract

Studying the processes occurring in liquid films under thermal influence allows improving a variety of technological systems, since a thin layer aids in providing a high intensity of heat and mass transfer and a significant surface of phase contact with a minimum liquid consumption. Many Russian and international works wrote about theoretical and experimental studies of film flows, though paid insufficient attention to the study of the behavior of films of a binary homogeneous solution. This article studies the behavior of a thin liquid film containing a volatile component during local heating of a solid horizontal substrate. The presented calculations were performed for an aqueous solution of isopropanol. The author describes the formation of a specific surface shape, which is formed with a sufficient increase in the substrate temperature and the initial film thickness — the so-called “liquid drop”, separated from the main volume of the liquid by a thin extended layer, which is explained by the sequential occurrence of thermal and concentration-capillary flows. The results show a significant influence of the Laplace pressure jump on the character of the entire process. In addition, the cooling of the substrate leads to multidirectional flows, but in the opposite directions. The analysis of the functions of the temperature of the film free surface, the volatile component concentration in the solution, and the vapor density over the free surface at different times is carried out. The velocity field in liquid and gas during the evolution of thermocapillary and concentration-capillary flows is illustrated.

Publisher

Tyumen State University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3