ON OSCILLATORY INSTABILITY IN A SYSTEM OF TWO IMMISCIBLE LIQUIDS UPON LOCAL HEATING OF THE INTERFACE

Author:

Klyuev Denis S.1,IVANOVA Natalia А.1

Affiliation:

1. University of Tyumen

Abstract

Modern methods of controlling the shape of interfacial surfaces of miscible and immiscible liquids, as well as technologies based on them, adaptive liquid optics, or the so-called free-form optics, require a deep understanding of the processes of heat and mass transfer occurring at the interface. These processes have a significant effect on the shape of the surface and the rate of its transition to a stable state, which is the determining criterion for accommodating the optical characteristics of liquid-layer optics. The aim of this work is to study the main modes of thermocapillary convection in a horizontal system of two immiscible liquids. The reason for the occurrence of heat and mass transfer in the system under study was the local heating of the interface with the help of laser radiation. The technique for obtaining information about the change in the curvature of the layer surface as an indicator of the hydrodynamic stability of the system is based on measuring the diameter of the interference pattern formed on a remote screen by a laser beam reflected from the deformed surface of the liquid. Using this method, it was found that one of the systems under consideration (benzyl alcohol — polymethylsiloxane) is characterized by the appearance of hydrodynamic instability of an oscillatory nature, which manifests itself in a change in the shape of both the interface between the two liquids and the free boundary. The distinctive features of the evolution of the detected instability are shown, and an assumption is made about the influence of microbubble clusters, revealed by the method of optical microscopy, as the cause of the onset and damping of oscillations. It is assumed that the movement of bubble clusters by means of thermocapillary flows and capillary drift contributes to the formation of a local difference in interfacial tension, leading to destabilization of the stable deformation of the layer and the transition of the system to a mode of oscillatory instability. The decay times and periods of oscillations are determined depending on the thickness of the upper layer.

Publisher

Tyumen State University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3