Simulation of Residential Real Estate Markets in the Largest Russian Cities

Author:

Yasnitsky L. N., ,Yasnitsky V. L.,Alekseev A. O., , ,

Abstract

The existing mass appraisal models and mathematical tools for predicting the market value of residential property have a number of disadvantages, as they are developed for individual regions. Without considering the constantly changing economic environment, these models quickly become outdated and require constant updating. Thus, they are not suitable for construction business optimisation. The study aims to create a universally applicable real estate appraisal system for Russian cities, regardless of the constantly changing economic situation. This goal was achieved through the creation of a neural network, whose input parameters include construction and operational data, geographical factors, time effect, as well as a number of indicators characterising the economic situation in specific regions, Russia and the world. In order to examine the dynamics of real estate markets in the Russian Federation, statistical data for neural network training were collected over a long period from 2006 to 2020. Virtual computer experiments were performed for testing the developed system. They showed that minimum size one-room apartments of 16 square meters have the highest unit cost per square meter in Moscow. Two-room apartments with an area of 90 square meters have the maximum price, as well as 100 sq. m. three-room, 110 sq. m. four-room and 120 sq. m. five-room apartments. In Ekaterinburg, two-room apartments with a total area of 30 square meters have the highest cost per square meter; the same applies for 110 sq. m. three-room, 130 sq. m. four-room and 150 sq. m. five-room apartment. Thus, the proposed system can be used to optimise the construction business. It can be also be useful for government institutions concerned with urban real estate market management, property taxation, and housing market improvement.

Publisher

Institute of Economics of the Ural Branch of the RAS

Subject

General Economics, Econometrics and Finance,General Business, Management and Accounting,General Social Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3