Meta-regression Analysis of Technical (In)Efficiency in Agriculture: a Regional Approach

Author:

dos Santos Micael QueirogaORCID,Marta-Costa Ana AlexandraORCID,Rodríguez Xosé AntónORCID

Abstract

While scientific studies have not reached a consensus on the methodology for examining Technical Efficiency (or Inefficiency), the influence of regions appears to be important for efficiency scores. Therefore, this research aims to investigate the empirical procedures for the achievement of more robust results in the analysis of productive efficiency, as well as to evaluate the effect of the location of farms on such efficiency. The goal was to check whether the most developed regions are the most efficient. Meta-regression analysis provides an adequate method for an accurate assessment of both situations. This technique was applied based on a database of 166 observations on the agricultural sector from countries around the world, published in the period 2010–2017. The criteria used for the database collection and for the conceived model were not previously used and, thereby, enrich the discussion on the topic. The procedure aims to check the variation in the Mean of Technical Inefficiency and conduct an analysis using Quasi-Maximum Likelihood Estimation. The regressions showed that the Mean of Technical Inefficiency could be mainly explained by data, variables, employed empirical models and the region of study. The studies that focus on farms of developed countries present the lowest Mean of Technical Inefficiency, while studies for developing or low-income countries exhibit the opposite. Therefore, for future research on productive analysis, we suggest empirical procedures aimed at achieving robust results that take into account specific regional characteristics of farms.

Publisher

Institute of Economics of the Ural Branch of the RAS

Subject

General Economics, Econometrics and Finance,General Business, Management and Accounting,General Social Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3