USO DA INTELIGÊNCIA ARTIFICIAL NO DIAGNÓSTICO DE DOENÇAS NEURODEGENERATIVAS: UMA REVISÃO INTEGRATIVA

Author:

Silva Souza Mariana,Nery Sabrina Beatriz MendesORCID,Araújo Suellen MuniqueORCID,Araújo Paulo da CostaORCID,Sousa Ana Maria CoutoORCID,Silva Élida Brandão daORCID,Nascimento Isabela Gonçalves doORCID,Braga Emanoelle Maria de SousaORCID,Prado Taynara MartelliORCID,Mano Suzana de SousaORCID,Nunes Graziele FerreiraORCID,Moura Ayla de JesusORCID,Freitas Ricardo de CarvalhoORCID

Abstract

As doenças neurodegenerativas (DNs) são doenças debilitantes, incuráveis, que causam perda progressiva e irreversível de neurônios e outras células cerebrais, e provocam alterações funcionais no sistema nervoso central (SNC), afetando o movimento e a função do corpo. Esta pesquisa tem como objetivo descrever sobre o uso da inteligência artificial (IA) no diagnóstico de doenças neurodegenerativas. Trata-se de uma pesquisa descritiva do tipo revisão integrativa da literatura. A pesquisa foi realizada através do acesso online no banco de dados da Biblioteca Virtual em Saúde (BVS), indexadas na base de dados da Medical Literature Analysis and Retrieval System Online (MEDLINE). Para a busca das obras foram utilizadas as palavras-chave presentes no Medical Subject Headings (MeSH), foram elas: Artificial intelligence AND Neurodegenerative AND Diagnosis. Os resultados mostraram que as ferramentas de IA mais utilizadas no diagnóstico de doenças neurodegenerativas são os biomarcadores de imagem (tomografia por emissão de pósitrons (PET) e a tomografia computadorizada por emissão de fóton único (SPECT), além do Computer-Aided Desidn (CAD), o aprendizado em máquina, em inglês – Machine Learning (ML), uso de aplicativos Deep Learning (DL). Concluiu-se que a IA é uma importante ferramenta para o diagnóstico de doenças neurodegenerativas, pois, conforme demonstrado na literatura, a inteligência artificial reduz o tempo, melhora a precisão e confiabilidade do diagnóstico das doenças neurodegenerativas.

Publisher

Revista Cientifica Saude e Tecnologia

Reference13 articles.

1. BELIĆ, Minja et al. Artificial intelligence for assisting diagnostics and assessment of Parkinson’s disease - A review. Clinical neurology and neurosurgery, v. 184, p. 105442, 2019. Disponível em: https://doi.org/10.1016/j.clineuro.2019.105442. Acesso em: 28 abr. 2022.

2. BRZEZICKI, Maksymilian A. et al. Diagnostic accuracy of frontotemporal dementia. An artificial intelligence-powered study of symptoms, imaging and clinical judgement. Advances in Medical Sciences, v. 64, n. 2, p. 292-302, 2019. Disponível em: https://doi.org/10.1016/j.advms.2019.03.002. Acesso em: 28 abr. 2022.

3. CAI, Zhennao et al. An intelligent Parkinson’s disease diagnostic system based on a chaotic bacterial foraging optimization enhanced fuzzy KNN approach. Computational and mathematical methods in medicine, v. 2018, 2018. Disponível em: https://doi.org/10.1155/2018/2396952. Acesso em: 28 abr. 2022.

4. CHANG, Chun-Hung; LIN, Chieh-Hsin; LANE, Hsien-Yuan. Machine learning and novel biomarkers for the diagnosis of Alzheimer’s disease. International Journal of Molecular Sciences, v. 22, n. 5, p. 2761, 2021. Disponível em: https://doi.org/10.3390/ijms22052761. Acesso em: 28 abr. 2022.

5. GIANNAKOPOULOU, Konstantina-Maria; ROUSSAKI, Ioanna; DEMESTICHAS, Konstantinos. Internet of Things Technologies and Machine Learning Methods for Parkinson’s Disease Diagnosis, Monitoring and Management: A Systematic Review. Sensors, v. 22, n. 5, p. 1799, 2022. Disponível em: https://doi.org/10.3390/s22051799. Acesso em: 28 abr. 2022.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3