Treatment of Radiation Lesions with Mesenchymal Stem Cells

Author:

Lakota Já.1ORCID

Affiliation:

1. Centre of Experimental Medicine, SAS; Comenius University

Abstract

   Acute radiation syndrome (ARS) is an acute illness caused by exposure to a high dose of ionizing radiation. ARS is the deterministic effect of radiation exposure of the whole body or a significant body volume (partial body irradiation) above a threshold dose of about 1 Gy (gray). Radiation accidents, such as those in Chernobyl (1986) and Fukushima (2011), or the possible use of nuclear weapons during the hostilities or terrorist attacks, can lead to the massive development of ARS in humans.   The aim of the work is to introduce a new method of post-radiation treatment – the use of allogeneic mesenchymal stem cells (MSCs).   Materials and methods. The information contained in specialized scientific journals that are freely available and accessible through the global Internet was studied.   Discussion of the results. In the scenario of mass exposure of the population, when from several tens (hundreds) to millions of people can be irradiated, the transfusion of hematopoietic stem cells traditionally used in such cases would be impossible. MSCs can possibly differentiate into specialized cells, that is, turn into cells of various organs and tissues or induce such kind of regeneration. For practical use, there are two main sources of their isolation and reproduction ex vivo – bone marrow and adipose tissue. To date, it has been shown that MSCs derived from adipose tissue can be effective in mitigating the effects of acute radiation illness. Intravenously applied MSCs are migrating mainly to the bone marrow and are partially restoring its function. Deep anatomical structures are also involved in local radiation injuries: bone, muscles, nerves, blood and lymphatic vessels and skin. There is a strong body of evidence suggesting the «repair effect» of MSCs when used to treat such lesions. This is because MSCs can induce the repair and regeneration of the anatomical structures which they are locally applied, possibly by the paracrine effect. The main advantage of allogeneic MSCs over autologous ones is their logistical accessibility. They can be produced in advance in quantities and stored frozen. After thawing, the cells must be cultured for at least 48 hours in humidified incubators with the addition of 5 % CO2.   Findings. Treatment of MSCs should be started as soon as possible after radiation exposure. Rescue of damaged hematopoiesis in the bone marrow can be achieved by multiple intravenous administration of up to 1 million (106) freshly prepared allogeneic MSCs/kg body weight. Locally (around and in the irradiation area), the dose of MSCs may be lower – 20 million cells. Repeated topical application should be carried out at intervals of two to four weeks. Subsequent surgical reconstruction should be performed by an experienced surgeon and in a specialized center with concomitant topicalapplication of MSCs.

Publisher

27 Science Center

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3