The evolving role of OCT in pathologic myopia

Author:

Greve Mark,Seamone Mark,Shen Carl

Abstract

The global burden of myopia represents a significant public health concern that is expected to continue to increase in the near future. It is estimated that 50% of the world’s population will be affected by myopia by 2050, with a disproportionately high prevalence in Asia. High myopia, where the spherical equivalent refractive error is equal to or higher than 6.00 diopters, is expected to increase in prevalence from 2.7% to 10% during this period. The severity of myopia is of paramount concern to clinicians as higher levels are associated with pathologic myopia (PM) and increased risk of vision loss. Pathologic myopia, as recently defined by the International Myopia Institute, is an excessive axial elongation associated with myopia that leads to structural changes in the posterior segment of the eye that can lead to loss of best-corrected visual acuity. These structural changes and their complications include posterior staphyloma, myopic choroidal neovascularization, myopic maculopathy, myopic traction maculopathy, dome shaped maculopathy, optic disc changes and glaucoma associated with myopia, and retinal detachments. The advent of optical coherence tomography (OCT) has facilitated the characterization, diagnosis, and management of several of these complications associated with PM and will be the focus of this article. Imaging the highly myopic eye represents a crucial step in the identification of these complications and poses its own unique challenges. Researchers have demonstrated the advantage of 3D cube scans in the detection of pathology compared to 1- and 5-line rasters. Using vertical scanning patterns aligning where the radius of curvature is larger relative to the horizontal plane of the myopic eye can minimize associated artifacts. Wide scans, facilitated by emerging technologies such as swept- source OCT and ultra wide-field OCT, are useful in cases of PM where the pathology can initiate peripherally.

Publisher

Catalytic Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3