THE EFFECT OF SOLID MANURE INCORPORATION INTO THE SOIL ON THE EMISSION OF GASES AND ODOURS

Author:

MIELCAREK Paulina1,RZEŹNIK Wojciech1,ZBYTEK Zbyszek2

Affiliation:

1. Institute of Technology and Life Sciences, Department of the Technology and Emissions Development in Farms

2. Industrial Institute of Agricultural Engineering, Testing Laboratory for Agricultural Machines

Abstract

The aim of the study was to determine the level of emission reduction of selected harmful gases and odours following immediate manure incorporation into soil, using the prototype manure applicator. The research was carried out at the Experimental Station of the National Research Institute of Animal Production, in September 2016. Two experimental fields size 6 x 100 m were located on corn stubble in the distance of 40 m. In field A, the solid manure was incorporated into the soil using the prototype manure applicator. In field B, manure application was made by manure spreader. The prototype manure applicator was designed and made by Industrial Institute of Agricultural Engineering. The concentration of harmful gases (NH3, CO2, CH4, N2O) and odours was measured during the study. Measurements were made in the following periods: immediately after application and 2, 4, 6, 10 and 14 hours after application. The concentration of studied gases was measured immediately after sampling by the photoacoustic spectrometer (Multi Gas Monitor Innova 1312). The odours concentration was determined within 30 hours after air sampling by dynamic olfactometry using the TO 8 olfactometer. The solid manure incorporation reduced NH3 emissions by an average of 66%. For the other studied gases the differences in concentration were too small or this concentration was similar to concentration of these gases in surrounding air. The incorporation of solid manure limited also odour emissions. The level reduction decreased with time and amounted to an average of 25%.

Publisher

Aleksandras Stulginskis University

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of the Slurry Application Method on Odour Emissions: A Pilot Study;Polish Journal of Environmental Studies;2020-01-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3