1. Aguilar, G., López Monroy, A. P., González, F., and Solorio, T. (2018). “Modeling Noisiness to Recognize Named Entities using Multitask Neural Networks on Social Media.” In Proceedings of the 2018 Conference of the NAACL-HLT, Volume 1 (Long Papers), pp. 1401–1412.
2. Akbik, A., Bergmann, T., Blythe, D., Rasul, K., Schweter, S., and Vollgraf, R. (2019). “FLAIR: An Easy-to-Use Framework for State-of-the-Art NLP.” In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations), pp. 54–59.
3. Akbik, A., Blythe, D., and Vollgraf, R. (2018). “Contextual String Embeddings for Sequence Labeling.” In Proceedings of the 27th International Conference on Computational Linguistics, pp. 1638–1649.
4. Beltagy, I., Lo, K., and Cohan, A. (2019). “SciBERT: A Pretrained Language Model for Scientific Text.” In Proceedings of the 2019 EMNLP-IJCNLP, pp. 3615–3620. Association for Computational Linguistics.
5. Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017). “Enriching Word Vectors with Subword Information.” Transactions of the Association for Computational Linguistics, 5, pp. 135–146.